Abstract

In this paper, we present a new class of one-dimensional cellular automata (which can be considered as a special case of a two dimensional cellular automata) that shows better pseudo-randomness properties based on Knuth's empirical tests than linear hybrid cellular automata and linear feedback shift register. A theorem is given to calculate the number of distinct transitions and the effectiveness of our proposed cellular automata is investigated by using them as test pattern generators for built-in self-test of the ISCAS 89 benchmark circuits. Our experimental results show that our cellular automata produce better sequential fault coverage than linear feedback shift register and linear hybrid cellular automata.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.