Abstract
An (n,r)-arc is a set of n points of a projective plane such that some r, but no r+1 of them, are collinear. The maximum size of an (n,r)-arc in PG(2, q) is denoted by mr(2, q). In this paper, a new (286, 16)-arc in PG(2,19), a new (341, 15)-arc, and a (388, 17)-arc in PG(2,25) are constructed, as well as a (394, 16)-arc, a (501, 20)-arc, and a (532, 21)-arc in PG(2,27). Tables with lower and upper bounds on mr(2, 25) and mr(2, 27) are presented as well. The results are obtained by nonexhaustive local computer search.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.