Abstract

In attempts to unify the four known fundamental forces in a single quantum-consistent theory, it is suggested that Lorentz symmetry may be broken at the Planck scale. Here we search for Lorentz violation at the low-energy limit by comparing orthogonally oriented atomic orbitals in a Michelson-Morley-type experiment. We apply a robust radiofrequency composite pulse sequence in the 2F7/2 manifold of an Yb+ ion, extending the coherence time from 200 μs to more than 1 s. In this manner, we fully exploit the high intrinsic susceptibility of the 2F7/2 state and take advantage of its exceptionally long lifetime. We match the stability of the previous best Lorentz symmetry test nearly an order of magnitude faster and improve the constraints on the symmetry breaking coefficients to the 10−21 level. These results represent the most stringent test of this type of Lorentz violation. The demonstrated method can be further extended to ion Coulomb crystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.