Abstract
To develop a methodology for improved estimation of bolus arrival time (BAT) and arterial input function (AIF) which are prerequisites for tracer kinetic analysis of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data and to verify the applicability of the same in the case of intracranial lesions (brain tumor and tuberculoma). A continuous piecewise linear (PL) model (with BAT as one of the free parameters) is proposed for concentration time curve C(t) in T(1)-weighted DCE-MRI. The resulting improved procedure suggested for automatic extraction of AIF is compared with earlier methods. The accuracy of BAT and other estimated parameters is tested over simulated as well as experimental data. The proposed PL model provides a good approximation of C(t) trends of interest and fit parameters show their significance in a better understanding and classification of different tissues. BAT was correctly estimated. The automatic and robust estimation of AIF obtained using the proposed methodology also corrects for partial volume effects. The accuracy of tracer kinetic analysis is improved and the proposed methodology also reduces the time complexity of the computations. The PL model parameters along with AIF measured by the proposed procedure can be used for an improved tracer kinetic analysis of DCE-MRI data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.