Abstract
Based on the COMSOL software, body forces substituted into the Reynolds-averaged Navier–Stokes (RANS) equations as the source terms instead of the actual blade rows were improved to better predict the compressor performance. Improvements in parallel body force modeling were implemented, central to which were the local flow quantities. This ensured accurate and reliable off-design performance prediction. The parallel force magnitude mainly depended on the meridional entropy gradient extracted from three-dimensional (3D) steady single-passage RANS solutions. The COMSOL software could easily and accurately translate the pitchwise-averaged entropy into the grid points of the body force domain. A NASA Rotor 37 was used to quantify the improved body force model to represent the compressor. Compared with the previous model, the improved body force model was more efficient for the numerical calculations, and it agreed well with the experimental data and computational fluid dynamics (CFD) results. The results indicate that the improved body force model could quickly and efficiently capture the flow field through a turbomachinery blade row.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.