Abstract

This study aimed to explore the in vitro and in vivo roles of macrophages in the osteogenesis stimulated by BMP2-CPC. In vitro, the alteration of macrophage polarization and cytokine secretion induced by BMP2-CPC or CPC was investigated. The influence of conditioned medium derived from BMP2-CPC- or CPC-stimulated macrophages on the migration and osteogenic differentiation of MSCs were evaluated. The in vivo relationship between macrophage polarization and osteogenesis was examined in a rabbit calvarial defect model. The in vitro results indicated that BMP2-CPC and CPC induced different patterns of macrophage polarization and subsequently resulted in distinct patterns of cytokine expression and secretion. Conditioned medium derived from BMP2-CPC- or CPC-stimulated macrophages both exhibited apparent osteogenic effect on MSCs. Notably, BMP2-CPC induced more M2-phenotype polarization and higher expression of anti-inflammatory cytokines and growth factors than did CPC, which led to the better osteogenic effect of conditioned medium derived from BMP2-CPC-stimulated macrophages. The rabbit calvarial defect model further confirmed that BMP2-CPC facilitated more bone regeneration than CPC did by enhancing M2-phenotype polarization in local macrophages and then alleviating inflammatory reaction. In conclusion, this study revealed that the favorable immunoregulatory property of BMP2-CPC contributed to the strong osteogenic capability of BMP2-CPC by modulating macrophage polarization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call