Abstract

InGaN/GaN multiple-quantum-well light-emitting diodes (LEDs) with p-AlGaN electron blocking layers (EBLs) were grown by using metal-organic chemical vapor deposition. The effects of the EBL thickness on the electrical properties and the luminescent efficiency of the LEDs were investigated by using capacitance-voltage (C–V) measurements, current-voltage (I — V) measurements, electroluminescence (EL), and time-resolved photoluminescence (TR-PL). The EL efficiency of the LEDs increased with increasing thickness of the p-AlGaN EBL. In addition, the EL efficiency of the LEDs also increased with increasing injection current. The carrier lifetime of the LEDs increased with increasing thickness of the p-AlGaN EBL.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call