Abstract

The clinical efficacy of vertebral cement augmentation for compression fractures (VCFs) remains undetermined. Recent studies have shown that refracture and progression of deformity may occur after augmentation with significant clinical consequences. Vertebral body height loss following kyphoplasty has also been observed with cyclic loading. We hypothesized that height loss is partly due to lack of cement fill past the margin of cancellous bone created by balloon expansion with subsequent failure under load. The biomechanical characteristics of two alternative cementation techniques were compared to standard kyphoplasty in cyclically loaded cadaveric VCF constructs. Sectioned osteoporotic thoracolumbar cadaveric spines were compressed to 75% of anterior vertebral height. Specimens were then allocated to standard kyphoplasty, balloon pressurization (BP), with reinflation of the balloon after 50% cement injection, or endplate post (EP), with perforation of the cavity rim using an articulating curette prior to injection. Following cementation, each specimen was preconditioned and loaded over 100,000 cycles. All techniques improved vertebral height (p's < 0.005). The EP and BP techniques provided greater cement fill than the standard technique (p's ≤ 0.01). Normalized vertebral height loss following 100,000 cycles was reduced with the EP technique versus standard kyphoplasty (p < 0.04). Height loss was inversely correlated with cement fill (p < 0.03). No vertebral recollapse occurred with the EP technique in blinded radiographic analysis. Statement of clinical significance: The EP technique demonstrated improved biomechanical characteristics versus the standard technique in cadaveric osteoporotic VCF constructs with decreased recollapse following cementation. This technique may have increased efficacy in cases when kyphoplasty more substantially improves vertebral body height. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:3225-3230, 2018.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.