Abstract

Significant effort has been devoted to fabricating various biomaterials to satisfy specific clinical requirements. In this study, we developed a new type of guided tissue regeneration (GTR) membrane by electrospinning a suspension consisting of poly( l-lactic acid), multiwalled carbon nanotubes, and hydroxyapatite (PLLA/MWNTs/HA). MWNTs/HA nanoparticles were uniformly dispersed in the membranes, and the degradation characteristics were far improved. Cytologic research revealed that the PLLA/MWNTs/HA membrane enhanced the adhesion and proliferation of periodontal ligament cells (PDLCs) by 30% and inhibited the adhesion and proliferation of gingival epithelial cells by 30% also, compared with the control group. After PDLCs were seeded into the PLLA/MWNTs/HA membrane, cell/membrane composites were implanted into the leg muscle pouches of immunodeficient mice. Histologic examinations showed that PDLCs attached on the membranes functioned well in vivo. This new type of membrane shows excellent dual biological functions and satisfied the requirement of the GTR technique successfully in spite of a monolayer structure. Compared with other GTR membranes on sale or in research, the membrane can simplify the manufacturing process, reduce the fabrication cost, and avoid possible mistakes in clinical application. Moreover, it does not need to be taken out after surgery. PLLA/MWNTs/HA membranes have shown great potential for GTR and tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.