Abstract

The property of cathode in the microbial fuel cell (MFC) was one of the key factors limiting its output performance. MnO2 nanorods were prepared by a simple hydrothermal method as cathode catalysts for MFCs. There were a number of typical characteristic crystal planes of MnO2 nanorods like (110), (310), (121), and (501). Additionally, there were great many hydroxyl groups on the surface of nanorod-like MnO2, which provided a rich set of active adsorption sites. The maximum power density (Pmax) of MnO2-MFC was 180 mW/m2, which was 1.51 times that of hydrothermally synthesized MnO2 (119.07 mW/m2), 4.28 times that of naturally synthesized MnO2 (42.05 mW/m2), and 5.61 times that of the bare cathode (32.11 mW/m2). The maximum voltage was 234mV and the maximum stabilization time was 4days. The characteristics of MnO2, including rod-like structure, high specific surface area, and high conductivity, were conducive to providing more active sites for oxygen reduction reaction (ORR). Therefore, the air cathode modified by MnO2 nanorods was a kind of fuel cell electrode with great application potential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call