Abstract
Metabarcoding analysis of environmental DNA samples is a promising new tool for marine biodiversity and conservation. Typically, seawater samples are obtained using Niskin bottles and filtered to collect eDNA. However, standard sample volumes are small relative to the scale of the environment, conventional collection strategies are limited, and the filtration process is time consuming. To overcome these limitations, we developed a new large – volume eDNA sampler with in situ filtration, capable of taking up to 12 samples per deployment. We conducted three deployments of our sampler on the robotic vehicle Mesobot in the Flower Garden Banks National Marine Sanctuary in the northwestern Gulf of Mexico and collected samples from 20 to 400 m depth. We compared the large volume (∼40–60 L) samples collected by Mesobot with small volume (∼2 L) samples collected using the conventional CTD rosette – mounted Niskin bottle approach. We sequenced the V9 region of 18S rRNA, which detects a broad range of invertebrate taxa, and found that while both methods detected biodiversity changes associated with depth, our large volume samples detected approximately 66% more taxa than the CTD small volume samples. We found that the fraction of the eDNA signal originating from metazoans relative to the total eDNA signal decreased with sampling depth, indicating that larger volume samples may be especially important for detecting metazoans in mesopelagic and deep ocean environments. We also noted substantial variability in biological replicates from both the large volume Mesobot and small volume CTD sample sets. Both of the sample sets also identified taxa that the other did not – although the number of unique taxa associated with the Mesobot samples was almost four times larger than those from the CTD samples. Large volume eDNA sampling with in situ filtration, particularly when coupled with robotic platforms, has great potential for marine biodiversity surveys, and we discuss practical methodological and sampling considerations for future applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Deep Sea Research Part I: Oceanographic Research Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.