Abstract

Cluster routing is a critical routing approach in wireless sensor networks (WSNs). However, the uneven distribution of selected cluster head nodes and impractical data transmission paths can result in uneven depletion of network energy. For this purpose, we introduce a new routing strategy for clustered wireless sensor networks that utilizes an improved beluga whale optimization algorithm, called tCBWO-DPR. In the selection process of cluster heads, we introduce a new excitation function to evaluate and select more suitable candidate cluster heads by establishing the correlation between the energy of node and the positional relationship of nodes. In addition, the beluga whale optimization (BWO) algorithm has been improved by incorporating the cosine factor and t-distribution to enhance its local and global search capabilities, as well as to improve its convergence speed and ability. For the data transmission path, we use Prim's algorithm to construct a spanning tree and introduce DPR for determining the optimal route between cluster heads based on the correlation distances of cluster heads. This effectively shortens the data transmission path and enhances network stability. Simulation results show that the improved beluga whale optimization based algorithm can effectively improve the survival cycle and reduce the average energy consumption of the network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.