Abstract

Here, we present a systematically Si-doping strategy to improve the structural stability and battery performances of P2-type Na0.67Mn0.5Fe0.5O2 samples. Through Si4+ doping intended to settlement of the interstitial region in the crystal structure and investigate the effect on the electrical conductivity of the Na0.67Mn0.5Fe0.5O2. The structural properties were examined by x-ray absorption near-edge structure (XANES), x-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) measurements. The XANES spectra showed that the valence of both Manganese and iron ions was unchanged by Si. According to charge/discharge cycling measurements for constant current at room temperature, the lowest capacity fade was obtained for Na0.67Mn0.5Fe0.48Si0.02O2. The cycling measurements were also investigated at 50°C, and it was observed that the electrochemical properties were changed with temperature. It was developed an experimental setup for the measurements of the internal temperature of the battery cells during the charging/discharging process of CR2032 coin cells using an infrared thermal camera. The ohmic heat was calculated from chronoamperometry measurements using a developed setup, and the heat generation was explained by a quadratic equation in the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.