Abstract

The low nutritional value of barley for poultry is because of the absence of an intestinal enzyme for efficient depolymerization of (1, 3-1,4)-beta-glucan, the major polysaccharide of the endosperm cell walls. This leads to high viscosity in the intestine, limited nutrient uptake, decreased growth rate, and unhygienic sticky droppings adhering to chickens and floors of the production cages. Consequently, the 7.5 billion broiler chickens produced annually in the United States are primarily raised on corn-soybean diets. Here we show that addition to normal barley of 6.2% transgenic malt containing a thermotolerant (1,3-1,4)-beta-glucanase (4.28 microg.g(-1) soluble protein) provides a weight gain equivalent to corn diets. The number of birds with adhering sticky droppings is drastically reduced. Intestines and excrements of chickens fed the barley control diet contained large amounts of soluble (1,3-1,4)-beta-glucan, which was reduced by 75 and 50%, respectively, by adding transgenic malt to the diet. The amount of active recombinant enzyme in the small intestine corresponded to that present in the feed, whereas an 11-fold concentration of the enzyme was observed in the ceca, and a 7.5-fold concentration occurred in the excrement. Glycosylation of the beta-glucanase isolated from the ceca testified to its origin from the transgenic barley. Analysis of the data from this trial demonstrates the possibility of introducing individual recombinant enzymes into various parts of the gastrointestinal tract of chickens with transgenic malt and thereby the possibility of evaluating their effect on the metabolism of a given ingredient targeted by the enzyme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.