Abstract
The most efficient axion production mechanism in a supernova (SN) core is the nucleon-nucleon bremsstrahlung. This process has been often modeled at the level of the vacuum one-pion exchange (OPE) approximation. Starting from this naive recipe, we revise the calculation including systematically different effects, namely a non-vanishing mass for the exchanged pion, the contribution from the two-pions exchange, effective in-medium nucleon masses and multiple nucleon scatterings. Moreover, we allow for an arbitrary degree of nucleon degeneracy. A self consistent treatment of the axion emission rate including all these effects is currently missing. The aim of this work is to provide such an analysis. Furthermore, we demonstrate that the OPE potential with all the previous corrections gives rise to similar results as the on-shell T-matrix, and is \\pagebreak therefore well justified for our and similar studies. We find that the axion emissivity is reduced by over an order of magnitude with respect to the basic OPE calculation, after all these effects are accounted for. The implications for the axion mass bound and the impact for the next generation experimental axion searches is also discussed.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.