Abstract

Gas diffusion and sorption on the surface of metal oxides are investigated using atomistic simulations, that make use of two different force fields for the description of the intramolecular and intermolecular interactions. MD and MC computations are presented and estimates of the mean residence time, Henry’s constant, and the heat of adsorption are provided for various common gases (CO, CO2, O2, CH4, Xe), and semiconducting substrates that hold promise for gas sensor applications (SnO2, BaTiO3). Comparison is made between the performance of a simple, first generation force field (Universal) and a more detailed, second generation field (COMPASS) under the same conditions and the same assumptions regarding the generation of the working configurations. It is found that the two force fields yield qualitatively similar results in all cases examined here. However, direct comparison with experimental data reveals that the accuracy of the COMPASS-based computations is not only higher than that of the first generation force field but exceeds even that of published specialized methods, based on ab initio computations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.