Abstract

Global Climate Models (GCMs) generally exhibit significant biases in the representation of large-scale atmospheric circulation. Even after a sensible bias adjustment these errors remain and are inherited to some extent by the derived downscaling products, impairing the credibility of future regional projections. In this study we perform a process-based evaluation of state-of-the-art GCMs from CMIP5 and CMIP6, with a focus on the simulation of the synoptic climatological patterns having a most prominent effect on the European climate. To this aim, we use the Lamb Weather Type Classification (LWT, Lamb British isles weather types and a register of the daily sequence 736 of circulation patterns 1861-1971. METEOROL OFF, GEOPHYS MEM; 737 GB; DA 1972; NO 116; PP 1-85; BIBL 2P1/2, 1972), a subjective classification of circulation weather types constructed upon historical simulations of daily mean sea level pressure. Observational uncertainty has been taken into account by considering four different reanalysis products of varying characteristics. Our evaluation unveils an overall improvement of salient atmospheric circulation features consistent across observational references, although this is uneven across models and large frequency biases still remain for the main LWTs. Some CMIP6 models attain similar or even worse results than their CMIP5 counterparts, although in most cases consistent improvements have been found, demonstrating the ability of the new models to better capture key synoptic conditions. In light of the large differences found across models, we advocate for a careful selection of driving GCMs in downscaling experiments with a special focus on large-scale atmospheric circulation aspects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.