Abstract

The experimental autoimmune encephalomyelitis (EAE) model is the most commonly used animal model of multiple sclerosis (MS). However, phenotypic characterization of mice based on the traditional 5-point clinical paralysis scale does not fully capture disease progression. The frailty index (FI) conceptualizes frailty as the accumulation of health deficits and it is widely used to assess overall health in aging humans and preclinical models. Here, we adapted an established mouse FI tool for use in EAE mice and determined whether this could evaluate general signs of health in variably aged female EAE mice. The EAE-Clinical FI included 34 items related to clinical signs and deficits characteristic of aging and MS. This tool clearly showed more detailed EAE progression and severity at all ages, highlighting changes in systems other than motor paralysis measured with the traditional 5-point paralysis scale. When we induced disease at 3 and 6 months of age, mice showed typical EAE clinical manifestations with peak disease severity between 17 and 19 days post-induction and mean frailty scores of 0.36 ± 0.04 (3-month-old) and 0.43 ± 0.05 (6-month-old). By contrast, disease severity peaked after 14 days in 12-month-old mice. They showed atypical signs including wobbling, early belly drag, and splayed hindlegs that were better captured with the EAE-Clinical FI. Peak frailty scores also were higher than those of younger animals (0.54 ± 0.04). As MS most often develops in young to middle-aged people, this new tool may have significant value for use in EAE animal studies as a first step toward translation to people with MS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call