Abstract

Easy and safe in-vivo flow velocity studies in small coronary arteries have become feasible using a 0.014 'or 0.018' guidewire with an integrated Doppler probe in its tip (FloWire, Cardiometrics). Assessment of the flow velocity profile by the ratio of diastolic to systolic flow velocity (DSVR) is used as a diagnostic parameter. However, DSVR is a coarse quantifier of the flow velocity profile, and is subject to large physiologic variance and depends crucially on the quality of the Doppler signal. The aim of our study was to test parameters derived from statistical time series analysis for monitoring the quality of the instantaneous peak velocity (IPV) signal. Improvement of quantification of changes in quality and shape of flow velocity profiles by these parameters as compared to DSVR was a second goal. We investigated analog-digital converted IPV-signals and video registrations of corresponding greyscale spectra of intracoronary Doppler flow velocity signals. The signals were analyzed by using the autocorrelation function (ACF) in the time domain and a fast Fourier transform (FFT) in the frequency domain (standard time series statistics). The first minimum of autocorrelation function turned out to be very sensitive to signal quality, and Fisher's g of the periodogram was the parameter of choice for shape analysis. In 11 patients with coronary artery disease, pre and post PTCA, the sensitivity of DSVR and signal to noise ratio to changes in shape and quality of the flow velocity signals was compared to that of the new parameters. Nineteen Doppler flow velocity samples of good quality from measurements in nonstenotic vessels and 7 flow velocity tracings with visible artefacts were used to assess the value of these parameters in monitoring signal quality. By comparison with corresponding parameters in use (SNR and DSVR) a significantly improved performance of the new statistical parameters was observed with respect to sensitivity to changes in signal quality and flow profile. In view of these results and because of the short calculation time of these variables they should be used for on-line quality control and analysis of flow velocity profiles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call