Abstract

Body posture measurement approaches, required in biomechanical models to assess risk of musculoskeletal injuries, are usually costly and/or impractical for use in real workplaces. Therefore, we recently developed three artificial neural networks (ANNs), based on measured posture data on several individuals, to predict whole body 3D posture (coordinates of 15 markers located on body’s main joints), segmental orientations (Euler angles of 14 body segments), and lumbosacral (L5-S1) moments during static manual material handling (MMH) activities (ANNPosture, ANNAngle, and ANNMoment, respectively). These ANNs require worker's body height, body weight (only for ANNMoment), hand-load 3D position, and its mass as inputs to accurately predict 3D marker coordinates (RMSE = 7.0 cm), segmental orientations (RMSE = 29.9°) and L5-S1 moments (RMSE = 16.5 N.m) for various static MMH activities. The current work aims to further improve the accuracy of these ANNs by performing outlier elimination and data normalization (as effective tools to improve the accuracy of ANNs) as well as by introducing participant’s knee flexion angle (i.e., lifting technique: stoop, semi-squat, and full-squat) and body weight as new inputs into these ANNs. Results indicate that the RMSE of the new ANNPosture, ANNAngle, and ANNMoment reduced by, respectively, ∼43%, 10%, and 29% (from 7.0 cm, 29.9°, and 16.5 Nm in the original ANNs to, respectively, 4.0 cm, 27.0°, and 11.8 Nm). Such significant improvements in the predictive power of our ANNs further confirm their effectiveness as alternative posture-prediction approaches requiring minimal in vivo data collection in real workplaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.