Abstract
Apriori algorithm is one of the most classical algorithm in association rules, however, the algorithm is low efficiency, such as firstly it needs to repeatedly scan the database, which spends much in I/O. Secondly, it create a large number of 2- candidate itemsets during outputting frequent 2- itemsets. Thirdly, it doesn’t cancel the useless itemsets during outputting frequent k- itemsets. In the paper, it describes an improved algorithm based on the compressed matrices which improve the efficiency during creating frequent k- itemsets on three aspects, which simply scans the database once, after compressed transactional matrix, and by multiplied matrix get the frequent item sets, which effectively improved the efficiency in mining association rules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.