Abstract
In the job shop scheduling problem, there are $m$ machines and $n$ jobs. A job consists of a sequence of operations, each of which must be processed on a specified machine, and the aim is to complete all jobs as quickly as possible. This problem is strongly ${\cal NP}$-hard even for very restrictive special cases. The authors give the first randomized and deterministic polynomial-time algorithms that yield polylogarithmic approximations to the optimal length schedule. These algorithms also extend to the more general case where a job is given not by a linear ordering of the machines on which it must be processed but by an arbitrary partial order. Comparable bounds can also be obtained when there are $m'$ types of machines, a specified number of machines of each type, and each operation must be processed on one of the machines of a specified type, as well as for the problem of scheduling unrelated parallel machines subject to chain precedence constraints.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.