Abstract

Chimeric antigen receptor (CAR) T-cell therapy is effective in the treatment of cancers of hematopoietic origin. In the immunosuppressive solid tumor environment, CAR T cells encounter obstacles that compromise their efficacy. We developed a strategy to address these barriers by having CAR T cells secrete single-domain antibody fragments [variable heavy domain of heavy chain antibodies (VHH) or nanobodies] that can modify the intratumoral immune landscape and thus support CAR T-cell function in immunocompetent animals. VHHs are small in size and able to avoid domain swapping when multiple nanobodies are expressed simultaneously-features that can endow CAR T cells with desirable properties. The secretion of an anti-CD47 VHH by CAR T cells improves engagement of the innate immune system, enables epitope spreading, and can enhance the antitumor response. CAR T cells that secrete anti-PD-L1 or anti-CTLA-4 nanobodies show improved persistence and demonstrate the versatility of this approach. Furthermore, local delivery of secreted anti-CD47 VHH-Fc fusions by CAR T cells at the tumor site limits their systemic toxicity. CAR T cells can be further engineered to simultaneously secrete multiple modalities, allowing for even greater tailoring of the antitumor immune response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.