Abstract

Oxidation is a major problem for oils and fats, which can be mitigated by antioxidants. Rutin has excellent antioxidant activity, but its poor lipid solubility greatly limits its practical application. In this study, an efficient enzymatic synthesis route of lipophilic rutin ester was established using oleic acid as an acyl donor, and the antioxidant potential of rutin oleate was evaluated for the first time by proton (1 H) nuclear magnetic resonance (NMR) spectroscopy. The synthesized product was finally identified as rutin oleate by Fourier transform infrared, high-performance liquid chromatography-mass spectrometry, and 1 H, carbon-13, and DEPT-135 NMR analyses, and the acylation site was the 4‴-OH of the rhamnose group in the rutin molecule. The maximum conversion was over 93% after 48 h of reaction using Novozym 435 as catalyst under the best conditions among these tests. The conversion of rutin ester decreased with the increase of carbon chain length and the number of carbon-carbon double bonds of the fatty acid molecule. Most importantly, rutin oleate exhibited antioxidant capacity comparable to butylated hydroxytoluene and its counterparts (rutin and oleic acid) at low temperatures (60°C), but had a significant advantage at high temperatures (120°C). The antioxidant activity of rutin was significantly enhanced by lipase-mediated esterification with oleic acid. Therefore, rutin oleate could be further developed as a novel antioxidant for use in oil- and fat-based foods. © 2023 Society of Chemical Industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.