Abstract

Anthracyclines have long been considered to be among the most active agents clinically available for the treatment of breast cancer despite their toxicity. To improve their pharmacological profiles, a new macromolecular prodrug, denoted NC-6300, was synthesized. NC-6300 comprises epirubicin covalently bound to polyethylene-glycol polyaspartate block copolymer through an acid-labile hydrazone bond. The conjugate forms a micellar structure spontaneously in aqueous media with a diameter of 60-70 nm. The block copolymers are partially substituted with hydrophobic benzyl groups to stabilize the micellar structure. The present study was designed to confirm that polymeric micelles incorporating epirubicin through an acid-labile linker improve the therapeutic index and achieve a broad range of therapeutic doses. Pharmacokinetic studies in rats showed highly enhanced plasma retention of NC-6300 compared with native epirubicin. The maximal tolerated doses in mice of NC-6300 and native epirubicin were 25 and 9 mg/kg, respectively, when administered three times with a 4-day interval between each dose. NC-6300 at 15 and 20 mg/kg with the same administration schedule regressed a Hep3B human hepatic tumor with slight and transient bodyweight loss. Remarkably, NC-6300 also inhibited growth of an MDA-MB-231 human breast tumor at the same dosage. In contrast, native epirubicin at 7 mg/kg administered three times with a 4-day interval was only able to slow tumor growth. Tissue distribution studies of NC-6300 showed efficient free epirubicin released in the tumor at 74% by area under the concentration-time curve (AUC) evaluation, supporting the effectiveness of NC-6300. In conclusion, NC-6300 improved the potency of epirubicin, demonstrating the advantage of NC-6300 attributable to the efficient drug release in the tumor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call