Abstract

Weapon-target assignment (WTA) which is crucial in cooperative air combat explores assigning weapons to targets with the objective of minimizing the threats from those targets. Based on threat functions, there are four WTA models constrained by the payload and other tactical requirements established. The improvements of ant colony optimization are integrated with respect to the rules of path selection, pheromone update, and pheromone concentration interval, and algorithm AScomp is proposed based on the elite strategy of ant colony optimization (ASrank). We add garbage ants to ASrank; when the pheromone is updated, the elite ants are rewarded and the garbage ants are punished. A WTA algorithm is designed based on the improved ant colony optimization (WIACO). For the purpose of demonstration of WIACO in air combat, a real-time WTA simulation algorithm (RWSA) is proposed to provide the results of average damage, damage rate, and kill ratio. The following conclusions are drawn: (1) the third WTA model, considering the threats of both sides and hit probabilities, is the most effective among the four; (2) compared to the traditional ant colony algorithm, the WIACO requires fewer iterations and avoids local optima more effectively; and (3) WTA is better conducted when any fighter is shot down or any fighter’s missiles run out than along with the flight.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.