Abstract
Ant colony optimization (ACO) is a new heuristic algorithm which has been proven a successful technique and applied to a number of combinatorial optimization problems. The traveling salesman problem (TSP) is among the most important combinatorial problems. An ACO algorithm based on scout characteristic is proposed for solving the stagnation behavior and premature convergence problem of the basic ACO algorithm on TSP. The main idea is to partition artificial ants into two groups: scout ants and common ants. The common ants work according to the search manner of basic ant colony algorithm, but scout ants have some differences from common ants, they calculate each route's mutation probability of the current optimal solution using path evaluation model and search around the optimal solution according to the mutation probability. Simulation on TSP shows that the improved algorithm has high efficiency and robustness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.