Abstract
Artificial Neural Network (ANN) based tap changer control of closed primary bus and cross network connected parallel transformers has demonstrated potential use in power distribution system. In those research works the proposed ANN for application in this control were developed using various algorithms and concluded that a network trained by Bayesian Regularization (BR) backpropagation algorithm produced the best performance measured in terms of correct tap changing decisions. However, further improvement of ANN based transformer tap changer operation is always desirable. A general rule for obtaining good generalization is to use the smallest network that solves the problem. In this paper, we show that a small sized ANN is obtainable for further improvement of transformer tap changer operation by modifying the standard Cascade-Correlation algorithm. The modification incorporates weight smoothing of output layer weights in Cascade-Correlation learning using Bayesian frame work. Experimental results demonstrate that significant improvement in performance is achieved when an ANN is trained by modified Cascade-Correlation algorithm instead of standard Cascade-Correlation or Bayesian Regularization backpropagation algorithm. A comparison of performances of different algorithms in application to transformer tap changer operation is analyzed and the results are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Advanced Computational Intelligence and Intelligent Informatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.