Abstract

Owing to the presence of significant levels of toxic furan compounds reported globally in commercial foods by various food authorities, the objectives of this study were to develop an analytical method for determination of furan and its 10 derivatives in commercial foods using headspace-solid phase microextraction (HS-SPME)-Arrow coupled with gas chromatography-tandem mass spectrometry. Furan and its 10 derivatives were separated within 10 min by employing an HP-5MS capillary column with d4-furan as the internal standard for quantitation. The most optimal sample weight and extraction time for various commercial food samples, respectively, ranged from 1 to 5 g and 10-15 min depending on the sample variety. For extraction, carboxen/poly(dimethylsiloxane) (CAR/PDMS) cellulose was used with the temperature at 30 °C, equilibration time of 15 min, and desorption time of 3 min. The limit of detection ranged from 0.001 to 1.071 ng/g, while the limit of quantitation ranged from 0.003 to 3.571 ng/g. A high precision and accuracy were obtained for this method. The total furan content in commercial foods ranged from nd to 40 725.85 ng/g, in which the mean contents were the highest for brewed coffee (35 082.26 ng/g) and canned coffee (25 152.22 ng/g), while the lowest were for potato chip and cookies (0.57-1.48 ng/g), donut (1.50 ng/g), milk (0.34-30.38 ng/g), and oat (6.56 ng/g).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call