Abstract

We present a new complete analysis of the electroweak precision observables within the recently proposed 4-site Higgsless model, which is based on the SU(2)_L x SU(2)_1 x SU(2)_2 x U(1)_Y gauge symmetry and predicts six extra gauge bosons, W_{1,2} and Z_{1,2}. Within the epsilon_i (i=1,2,3,b) parametrization, we compute for the first time the EWPT bounds via a complete numerical algorithm going beyond commonly used approximations. Both epsilon_{1,3} impose strong constraints. Hence, it is mandatory to consider them jointly when extracting EWPT bounds and to fully take in to account the correlations among the electroweak precison measurements. The phenomenological consequence is that the extra gauge bosons must be heavier than 250 GeV. Their couplings to SM fermions, even if bounded, might be of the same order of magnitude than the SM ones. In contrast to other Higgsless models, the 4-site model is not fermiophobic. The new gauge bosons could thus be discovered in the favoured Drell-Yan channel already during the present run of the LHC experiment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call