Abstract

This study aimed to comprehensively characterize chemical profiles of proanthocyanidins (PACs) from grape seed extract (GSE), examine their interactions with proteins in a cream system, and define the mechanisms mediating PAC-protein interactions. GSE PACs were fractionated and characterized by thiolysis followed by liquid chromatography–high resolution mass spectrometry (LC-HRMS) analysis. New PACs with a degree of polymerization (DP) up to 16 were identified by improved HRMS data processing methods. In the model cream system, high-DP PACs exhibited greater precipitation capacity and protein binding than low-DP PACs. Low-DP PACs primarily engaged in hydrogen bonding, while high-DP PACs predominantly utilized multiple hydrophobic interaction sites to form cream protein aggregates. Furthermore, particle size and viscosity measurement of cream revealed a progressively DP-dependent increase in aggregated fat globules and cream viscosity. These findings enhanced our understanding of PACs’ structural intricacies and highlighted their functional role as PAC-rich natural ingredients in creating structured cream systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call