Abstract

The comet assay is one of the well-accepted tests to measure radiation-induced DNA damage. The most commonly used protocols require single-cell suspensions that are embedded in agarose in order to perform electrophoresis. For adherently growing cells such as human HaCaT skin keratinocytes this method bears several problems. We show that trypsinization required for maintaining single-cell suspensions is prolonged after UV radiation and thereby reduces cell viability and allows partial repair, with the consequence of reduced damage detection after irradiation. Therefore, we here introduce a modified version of the comet assay where HaCaT cells are seeded onto comet slides 24 h before the assay and overlaid with agarose immediately after irradiation. Using this modification we are now able to reproducibly measure high DNA-damage levels (13-fold increase compared with controls) following irradiation with 60 J/cm 2 UVA as well as a dose-dependent increase of DNA damage after 10, 20 and 60 J/cm 2 UVA. Thus, by maintaining the cells in their natural configuration, i.e. adherently growing, we exclude several artefacts that are likely to influence the damage responses. These include: (i) trypsinization-dependent changes in cell morphology and polarity (clear lateral, i.e. adherent, and apical side of keratinocytes) which are likely of consequence for the gene-expression pattern, (ii) trypsin- and dislodgement-induced damage reducing cell viability, and (iii) the time delay between damage induction and damage evaluation to unpredictable results due to partial repair. Since these advantages pertain to all adherently growing cells, this improved protocol is not restricted to HaCaT cells but offers great potential also with all non-haematopoietic cells for obtaining accurate results and for studying repair processes in a highly reproducible manner.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call