Abstract

The space-charge field (SCF) is a key factor in vacuum electronic devices, accelerators, free electron lasers and plasma systems, etc. The calculation of the SCF is very important since it has a great influence on the precision of numerical simulation results. However, calculating the SCF usually takes a lot of time, especially when the number of simulated particles is large. In this paper, we used a vectorization, parallelization and truncation method to optimize the calculation of the SCF based on the traditional calculation algorithms. To verify the validity of the optimized SCF calculation algorithm, it was applied in the performance simulation of a millimeter wave traveling wave tube. The results showed that the time cost was reduced by three orders compared with conventional treatment. The proposed algorithm also has great potential applications in free electron lasers, accelerators and plasma systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.