Abstract

We consider a boundary value problem (BVP) in unbounded 2D doubly periodic composite with circular inclusions having arbitrary constant conductivities. By introducing complex potentials, the BVP for the Laplace equation is transformed to a special -linear BVP for doubly periodic analytic functions. This problem is solved with use of the method of functional equations. The -linear BVP is transformed to a system of functional equations. A new improved algorithm for solution of the system is proposed. It allows one not only to compute the average property but to reconstruct the solution components (temperature and flux) at an arbitrary point of the composite. Several computational examples are discussed in details demonstrating high efficiency of the method. Indirect estimate of the algorithm accuracy has been also provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.