Abstract
We propose an improved photonic crystal (PC) cladding design for existing air-guiding photonic bandgap (PBG) fibers whose cladding airholes are arranged in a triangular lattice pattern. By increasing the sizes of concentrated silica regions in the cladding PC, we can have a larger degree of freedom in controlling the cladding bandgap regions. We predict that a fiber made from this type of cladding would perform better in terms of the PBG-guiding wavelength range, radiation loss owing to finite cladding size, and the ability to avoid surface mode problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.