Abstract

Modification of pristine biochars has received increasing attentions due to the significant potential in enhancing adsorption performance. In this work, the co-modification of KOH and KMnO4 on biochar (K-Mn-BC) was performed, with the effect of KOH/KMnO4 modification on biochar properties and their adsorption toward tetracycline (TC) being extensively explored. Results showed that KOH/KMnO4 modification can significantly regulate biochars to form hierarchical structure. The obtained K-Mn-BC was characterized with a high specific surface area (1524.6 m2 g−1) and total pore volume (0.85 cm3 g−1). In addition, the K-Mn-BC exhibited a high adsorption capacity of 584.19 mg g−1 toward TC at 318 K, and pseudo-second-order (R2:0.993~0.998) and Langmuir (R2: 0.834~0.874) models can fit well with the adsorption behavior. Moreover, the obtained K-Mn-BC can efficiently adsorb TC within a wide pH range (3.0–10.0), and were not affected by the co-existing ions. The possible mechanisms for the high adsorption capacity were ascribed to the pore filling and π-π interaction, following by hydrogen bonding and metal complexation. The obtained K-Mn-BC is a suitable adsorbent for TC removal from water due to the hierarchical structure, high adsorption capacity, and stable adsorption effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call