Abstract

Abstract The Resource Leveling Problem (RLP) aims to provide the most efficient resource consumption as well as minimize the resource fluctuations without increasing the prescribed makespan of the construction project. Resource fluctuations are impractical, inefficient and costly when they happen on construction sites. Therefore, previous research has tried to find an efficient way to solve this problem. Metaheuristics using Harmony Search seem to be faster and more efficient than others, but present the same problem of premature convergence closing around local optimums. In order to diminish this issue, this study introduces an innovative Improved and Adaptive Harmony Search (IAHS) algorithm to improve the solution of the RLP with multiple resources. This IAHS algorithm has been tested with the standard Project Scheduling Problem Library for four metrics that provide different leveled profiles from rectangular to bell shapes. The results have been compared with the benchmarks available in the literature presenting a complete discussion of results. Additionally, a case study of 71 construction activities contemplating the widest possible set of conditions including continuity and discontinuity of flow relationships has been solved as example of application for real life construction projects. Finally, a visualizer tool has been developed to compare the effects of applying different metrics with an app for Excel. The IAHS algorithm is faster with better overall results than other metaheuristics. Results also show that the IAHS algorithm is especially fitted for the Sum of Squares Optimization metric. The proposed IAHS algorithm for the RLP is a starting point in order to develop user-friendly and practical computer applications to provide realistic, fast and good solutions for construction project managers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call