Abstract

We present a simple and fast approach for the synthesis of a graphene–TiO2 hybrid nanostructure using a microwave-assisted technique. The microstructure, composition, and morphology were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, Raman microscopy, X-ray photoelectron spectroscopy, and field-emission scanning electron microscopy. The electrochemical properties were evaluated using cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge–discharge tests. Structural analysis revealed a homogeneous distribution of nanosized TiO2 particles on graphene nanosheets. The material exhibited a high specific capacitance of 165Fg−1 at a scan rate of 5mVs−1 in 1MNa2SO4 electrolyte solution. Theenhanced supercapacitance property of these materials could be ascribed to the increased conductivity of TiO2 and better utilization of graphene. Moreover, the material exhibited long-term cycle stability, retaining ∼90% specific capacitance after 5000 cycles, which suggests that it has potential as an electrode material for high-performance electrochemical supercapacitors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.