Abstract

In order to improve the grid-connected stability of wind power grid-connected inverter, solve the harmonic and resonance problems encountered at the grid-connected interface of inverter when the load jumps. An improved linear active disturbance rejection control strategy combined with active damping (ILADRC-AD) is designed. Firstly, the mathematical model of inductance-capacitance-inductance (LCL) inverter is established, and the principle of traditional third order active disturbance rejection controller is analyzed. Based on the idea of lead correction, an improved LADRC is designed by series lead correction links on the total disturbance channel of the linear extended state observer (LESO). Capacitive current feedback active damping is introduced in combination with improved LADRC to generate an ILADRC-AD control strategy. The stability and robustness of the system are effectively improved. Finally, the frequency characteristics of the ILADRC-AD inverter system are analyzed by frequency domain analysis method, and the MATLAB simulation comparison of improved control and traditional PI and LADRC the grid current waveform. The results show that the improved control not only has more stable grid-connected current, but also has fast dynamic response and strong harmonic suppression when the load fluctuates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.