Abstract

Solid and hollow ZnO nanofibers were fabricated through a facile single capillary electrospinning. The samples have been characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). A comparative acetone sensing study between the two samples were also performed. The results indicate that the ZnO hollow nanofibers show improved response to acetone at 220 °C with good selectivity and stability, which is attributed to the 1D hollow nanostructure. Especially, the sensor can detect acetone down to 1 ppm with obvious response (7.1). The formation mechanism and acetone sensing mechanism of the ZnO hollow nanofibers were also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.