Abstract

The use of zeolites in basic catalysis is limited when large molecules are involved, such as in the manufacture of fine chemicals, due to difficulty in accessing the micropores of the catalyst. A solution to this problem is to synthesize zeolites containing mesopores that improve the accessibility of the active sites. This work investigates the synthesis of zeolites 4A according to a bottom-up method employing the organosilane surfactant [3-(trimethoxysilyl) propyl] octadecyldimethylammonium chloride (TPOAC), at different concentrations in the synthesis mixture (TPOAC/Al2O3 = 0–0.09), to produce mesopores. The zeolites were evaluated in the Knoevenagel condensation reaction, which is strongly influenced by the accessibility of the catalytic sites, due to the large sizes of the molecules involved. Zeolites 4A with mesopores, showing higher external surface areas, were formed in the presence of TPOAC at the different concentrations tested. Higher conversions were achieved using the zeolites with mesopores, compared to conventional zeolite 4A, due to improved access of the reactant molecules to the catalytic sites. In addition, the reaction catalyzed by the zeolite with mesopores had lower activation energy, compared to use of the conventional zeolite 4A.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.