Abstract
In application of the (31)P selectively refocused insensitive nuclei enhanced polarization transfer (srINEPT) technique to the detection of phosphomono- and diesters in tissues, homonuclear couplings between the CH(2)O protons and the NCH(2) protons seriously attenuate the sensitivity. These couplings can be conventionally removed by two soft 180° pulses in the (1)H evolution period which selectively invert the NCH(2) magnetizations. However, the srINEPT pulse sequence can be simplified by replacing the pulse train "soft 180°-hard 180°-soft 180°" with a single soft 180° pulse that selectively inverts the CH(2)O magnetizations. Theoretical analysis in this study demonstrates the correctness of this approach in principle. Validation on a milk phantom allowed us to investigate and discuss advantages and disadvantages of the proposed srINEPT with respect to the original srINEPT. Furthermore, comparison of different selective pulses made it possible to demonstrate that the proposed srINEPT experiment is not sensitive to errors in pulse length, offset, and B(1) field strength of the selective pulse when ReBurp pulse is used for selective refocusing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.