Abstract
Recommender systems are one of the recent inventions to deal with information overload problem and provide users with personalized recommendations that may be of their interests. Collaborative filtering is the most popular and widely used technique to build recommender systems and has been successfully employed in many applications. However, collaborative filtering suffers from several inherent issues that affect the recommendation accuracy such as: data sparsity and cold start problems caused by the lack of user ratings, so the recommendation results are often unsatisfactory. To address these problems, we propose a recommendation method called “MFGLT” that enhance the recommendation accuracy of collaborative filtering method using trust-based social networks by leveraging different user's situations (as a trustor and as a trustee) in these networks to model user preferences. Specifically, we propose model-based method that uses matrix factorization technique and exploit both local social context represented by modeling explicit user interactions and implicit user interactions with other users, and also the global social context represented by the user reputation in the whole social network for making recommendations. Experimental results based on real-world dataset demonstrate that our approach gives better performance than the other trust-aware recommendation approaches, in terms of prediction accuracy.
Highlights
To address these problems, we propose a recommendation method called “MFGLT” that enhance the recommendation accuracy of collaborative filtering method using trust-based social networks by leveraging different user's situations (as a trustor and as a trustee) in these networks to model user preferences
We propose model-based method that uses matrix factorization technique and exploit both local social context represented by modeling explicit user interactions and implicit user interactions with other users, and also the global social context represented by the user reputation in the whole social network for making recommendations
تمّّإج ارءّالتجاربّهناّعلىّمجموعةّمعطياتّ"ّ"Epinionsفيّمنظورّ"ّ"All Usersوباستخدامّتقنيةّّ"5- ّ"fold cross validationعندماّّK=5والنتائجّمبينةّفيّالشكلّّ.5نلاحظّأنهّعندّحذفّتأثيرّالسياقّالاجتماعيّ العام ّمن ّالنموذج ّالمقترحّ ،فإن ّأداء ّالنموذج ّ"ّ "MFGLT\globalيتناقص ّمقارن ًة ّمع ّأداء ّالنموذج ّ"ّ."MFGLT كذلكّنلاحظّنفسّالأمرّبالنسبةّلنموذجّ"ّ"MFGLT\localعندّحذفّتأثيرّالسياقّالاجتماعيّالمحليّ.حيثّمثلاًّ، مقارن ًةّمعّنموذجّ"ّ،"MFGLTفإنّنموذجّ"ّ"MFGLT\globalلديهّتقليلّبالأداءّبمقدارّّ%1.68ّ،%1.55منّ حيث ّمقياسي ّ"ّ "MAEو"ّ "RMSEعلى ّالتواليّ ،ونموذج ّ"ّ "MFGLT\localلديه ّتقليل ّبالأداء ّبمقدار ّّ،%8.65 ّ %6.81من ّحيث ّمقياسي ّ"ّ "MAEو"ّ "RMSEعلى ّالتواليّ.كذلك ّعند ّحذفّ ّتأثي ارت ّالسياق ّالاجتماعي ّالعامّ والمحلي ّمعاً ّفي ّالنموذج ّ"ّ "MFGLT\global\localنحصل ّعلى ّأداء ّأسوء ّمن ّأداء ّنموذجي ّ"\MFGLT ّ "globalو"ّ "MFGLT\localمما ّيشير ّإلى ّأن ّالسياق ّالاجتماعي ّالعام ّوالمحلي ّلديهما ّمعلومات ّمكملة ّلبعضهاّ
Summary
السياقّالاجتماعيّالعامّمنّأجلّالتوصياتّ ّّ. انطلاقاًّمما ّسبقّ ،نقترح ّفي ّهذا ّالبحث ّطريقة ّتوصية ّمعتمدة ّعلىّالنموذج ّتدعى ّ"Matrix (ّ "MFGLT ّ )Factorization with Global Local Trustوالتي ّتستغل ّكل ّمن ّالسياق ّالاجتماعي ّالعام ّوالمحلي ّلعلاقاتّ الثقةّفيّنفسّالوقتّمنّأجلّالتوصياتّ.يقدمّهذاّالعملّاست ارتيجيةّجديدةّلصهرّمعطياتّالتقييمّّومعطياتّالثقةّ يفترض ّنموذج ّتحليل ّالمصفوفات ّإلى ّعوامل ّأن ّالقليل ّمن ّالعوامل ّالكامنة ّتؤثر ّعلى ّسلوكيات ّالتقييمّ
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: JOURNAL OF UNIVERSITY OF BABYLON for Pure and Applied Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.