Abstract

In this study, molecular engineering and biomimetic principles are utilized to prepare highly effective nitrile-functionalized pyrazine crosslinking units by exploiting pyrazine's unique nucleophilic strengthening mechanism and proton bonding ability. The curing behaviors of pyrazine-2,3-dicarbonitrile and phthalonitrile are investigated through model curing systems and molecular simulation. The results indicate that pyrazine-2,3-dicarbonitrile exhibits higher reactivity than phthalonitrile, promoted by amine. The cured products of pyrazine-2,3-dicarbonitrile predominantly comprise thermally stable azaisoindoline and azaphthalocyanine. This novel type of highly effective crosslinking unit, and the comprehended mechanism of action of pyrazine at the molecular level, significantly expand the application of pyrazine in materials science.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call