Abstract

This paper considers an unlicensed multiple-access channel (MAC) that coexists with a licensed point-to-point user, following the underlay cognitive radio paradigm. We assume that every transceiver except the secondary base station has one antenna, and that the primary user (PU) is protected by a minimum rate constraint. In contrast to the conventional assumption of proper Gaussian signaling, we allow the secondary users (SUs) to transmit improper Gaussian signals, which are correlated with their complex conjugate. When the secondary base station performs zero-forcing, we show that improper signaling is optimal if the sum of the interference channel gains (in an equivalent canonical model) is above a certain threshold. Additionally, we derive an efficient algorithm to compute the transmission parameters that attain the rate region boundary for this scenario. The proposed algorithm exploits a single-user representation of the secondary MAC along with new results on the optimality of improper signaling in the single-user case when the PU is corrupted by improper noise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.