Abstract

The 21-cm signal from the epoch of cosmic dawn prior to reionization consists of a promising observable to gain new insights into the dark matter (DM) sector. In this paper, we investigate its potential to constrain mixed (cold + non-cold) dark matter scenarios that are characterised by the non-cold DM fraction ($f_{\rm nCDM}$) and particle mass ($m_{\rm nCDM}$). As non-cold DM species, we investigate both a fermionic (sterile neutrino) and a bosonic (ultra-light axion) particle. We show how these scenarios affect the global signal and the power spectrum using a halo-model implementation of the 21-cm signal at cosmic dawn. Next to this study, we perform an inference-based forecast study based on realistic mock power spectra from the Square Kilometre Array (SKA) telescope. Assuming inefficient, yet non-zero star-formation in minihaloes (i.e. haloes with mass below $10^8$ M$_{\odot}$), we obtain stringent constraints on both $m_{\rm nCDM}$ and $f_{\rm nCDM}$ that go well beyond current limits. Regarding the special case of $f_{\rm nCDM}\sim 1$, for example, we find a constraint of $m_{\rm nCDM}>15$ keV (thermal mass) for fermionic DM and $m_{\rm nCDM}>2\times10^{-20}$ eV for bosonic DM. For the opposite case of dominating cold DM, we find that at most one percent of the total DM abundance can be made of a hot fermionic or bosonic relic. All constraints are provided at the 95 percent confidence level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call