Abstract

The electron temperature Te and ion temperature Ti in the corona vary with time and location, due to transient and persistent activity on the Sun. The effects of spatially localized disturbances in Te and Ti on coronal type III radio bursts are simulated. The disturbances are superimposed on monotonically varying temperature backgrounds and arise from spatially confined solar activity, Qualitatively and quantitatively different imprints are found on the curve of the maximum flux versus frequency of type III bursts, because of the disturbances in Te and Ti. The results indicate that nonthermal coronal type III bursts offer a new tool to probe and distinguish between spatially localized structures of Te and Ti along the paths of type III beams. Furthermore, localized temperature disturbances may be responsible for some fine structures in type III bursts, e.g., striae in type IIIb bursts in the presence of multiple, localized temperature disturbances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.