Abstract

Per- and polyfluoroalkyl substances (PFASs) can lead to risks associated with animal and human health through the transfer along food chains. It is confirmed that PFASs can be transported to each part of plants after taken up by the roots. To better elucidate the underlying mechanisms for such exposure, it is highly valuable to develop analytical capabilities for in vivo monitoring of PFASs in live plants. In this work, a novel imprinted covalent organic frameworks (CMIP) solid-phase microextraction coupled with ultra-performance liquid chromatography-tandem mass spectrometry was developed with low limits of detection for six acidic PFASs (0.1–0.3 ng g−1) and used for in vivo monitoring in live aloe. The CMIP coating shows good precision (RSD of intra and inter ≤9.6 % and 10.2 %, respectively) and possesses much higher extraction efficiency than the commercial coatings. After cultivating aloe in soil spiked PFASs, the in vivo assays gave a wealth of information, including steady-state concentrations, translocation factors, elimination rate constants, and half-life of PFASs. The in vivo tracing method for live plants can provide much needed and unique information to evaluate the risk of PFASs, which are very important for the safety of agriculture production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call