Abstract

The full behaviour of natural clay minerals in soil organic carbon (SOC) stabilization in the presence of oxides and external C inputs is yet unknown. Thus, an incubation experiment was conducted in a sand-clay mixture with different soil clay fractions (SCFs) obtained from Alfisol, Inceptisol, Mollisol, and Vertisol in the presence of wheat residues to compare their C stabilization capacity. The C mineralization rates were higher in 1:1 type dominated SCFs (Alfisol and Inceptisol) compared to 2:1 interstratified mineral dominated SCFs (Vertisol). Wheat residues as C source altered SCFs' abilities to stabilize SOC at only moderate dosages of application (3-12gkg-1). C mineralization and microbial biomass carbon (MBC) fell by 40% and 30%, respectively, as the amount of clay increased from 7.5 to 40%. However, removing sesquioxides from the SCFs boosted C mineralization and MBC by 22% and 16-32%, respectively, which matched with higher enzymatic activities in the sand-clay mixture. The increased C stabilization capacity of Vertisol-SCF may be attributed to its greater specific surface area (SSA) (506m2g-1) and cation exchange capacity (CEC) [meq/100g]. Regression analysis revealed that SSA, CEC, and enzymatic activity explained approximately 86% of total variations in C mineralization. This study highlighted the critical role of 2:1 expanding clay minerals and sesquioxides in greater stabilization of external C input compared to its 1:1 counterpart. It also implied that the role of mineralogy or texture and sesquioxides levels in different soils (Vertisol, Mollisol, Inceptisol, Alfisol) should be prioritized while adding crop residues to reduce C footprint and enhance sequestration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call