Abstract

INTRODUCTION: Breast cancer is a major health concern for women all over the world.
 OBJECTIVES: In order to reduce mortality rates and provide the most effective treatment, Histopathology image prognosis is essential. When a pathologist examines a biopsy specimen under a microscope, they are engaging in histopathology. The pathologist looks for the picture, determines its type, labels it, and assigns a grade.
 METHODS: Tissue architecture, cell distribution, and cellular form all play a role in determining whether a histopathological scan is benign or malignant. Manual picture classification is the slowest and most error-prone method. Automated diagnosis based on machine learning is necessary for early and precise diagnosis, but this challenge has prevented it from being addressed thus far. In this study, we apply curvelet transform to a picture that has been segmented using k-means clustering to isolate individual cell nuclei.
 RESULTS: We analysed data from the Wisconsin Diagnosis Breast Cancer database for this article in the context of similar studies in the literature.
 CONCLUSION: It is demonstrated that compared to another machine learning algorithm, the IICA-ANN IICA-KNN and IICA-SVM-KNN method using the logistic algorithm achieves 98.04% accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call